中国激光

第12卷第1期

利用 Fe:LiNbO₃ 晶体进行实时相关运算

吕团孙 刘文湖 (福建师范大学物理系) 张洪钧 戴建华 王鹏业 (中国科学院物理研究所)

徐良瑛

(中国科学院上海硅酸盐研究所)

提要:本文介绍一种利用 Fe:LiNbO3 晶体进行实时相关运算的方法。给出了 与理论相一致的实验结果。

Real-time optical correlation processing with Fe:LiNbO₃ crystal

Lu Tuansun, Liu Wenhu (Department of Physics, Fujian Normal University) Zhang Hongjun, Dai Jianhua, Wang Pengye (Institute of Physics, Academia Sinica)

Xu Liangying

(Shanghai Institute of Ceramics, Academia Sinica)

Abstract: A method of real-time optical correlation processing with $Fe:LiNbO_3$ is reported. The experimental results consistent with theory are given.

一、引 言

相关运算是光学信息处理中一种重要的 处理方法,它已被应用于诸如光学图象的特 征识别这样很有实际意义的领域中。在早期 的相关识别实验中^[11],必需预先制作匹配滤 波器,并且要求将制作好的滤波器在频谱 平面上精确地复位。1966年 Weaver 和 Goodman^{[21}提出了将进行相关运算的两个函 数都放在输入平面的方法,避免了滤波器复

收稿日期: 1984年1月23日。

位的困难。但处理过程仍不是实时的,而且 "读出"时必需引入另外一束平面光波。后来 S. H. Lee^[3,4]提出了一种带有非线性介质的 实时处理系统,并用隐花 菁 染料和 DODCI 染料作为非线性介质,分别在红宝石激光和 闪光灯泵浦的 R6G 染料激光下进行了实时 相关处理的初步实验。这种方法的特点是能 够进行实时处理,但由于实验中利用了染料 对强光的非线性吸收特性,因此要求激光器 的输出功率较高,在应用上受到限制。

在 S. H. Lee 方法的基础上, 我们用 $Fe:LiNbO_3$ 晶体作为实时记录介质放在 4f 系统的频谱平面上。在输入平面上,除了要 进行相关运算的函数 f 和 g 之外, 还有一偏 置的δ函数, 它的作用是使卷积和相关等一 些有用的信息能够在输出平面上同其他无用 的信息分离开。当用波长为6328Å的准直 激光束照明输入平面时,只要照射时间大于 介质的响应时间,即可在输出平面得到卷积 和相关运算的结果。同S.H.Lee的方法一 样, 整个处理过程都是实时的, 而且由于 Fe:LiNbO3 晶体记录的是位相全息图,具有 很高的衍射效率, 所以在输出平面上相关光 斑的信噪比较高。此外,由于使用低功率的 He-Ne 激光器作为光源, 以及用晶体作为记 录介质,使实验装置和方法都变得十分简便。

二、原 理

Fe:LiNbO₈ 是一种典型的铁电晶体。在 干涉光场作用下,晶体内部的载流子发生了 迁移,形成了局部电场。由于电光效应,晶体 的折射率也随之产生微小的变化,折射率的 空间变化随干涉光场分布而不同。于是在晶 体中记录的是位相全息图,其复振幅透过率 可写为:

 $T(\xi, \eta) \propto e^{i\frac{2\pi}{\lambda} 4n(\xi,\eta)d}$ (1)

式中 $\Delta n(\xi, \eta)$ 是由电光效应引起的晶体折射 率变化, d 是晶体厚度, λ 为入射光波长。 Δn 的典型值^[5]为 10⁻⁵,我们使用的晶体 $d\approx 1$ 毫米,入射光波长 $\lambda=6.33\times10^{-4}$ 毫米, $\frac{2\pi}{\lambda}$ $\Delta nd\approx 10^{-1}$ 。于是可将(1)式展开并略去 高次项,得

$$T(\xi, \eta) \propto 1 + i \frac{2\pi}{\lambda} \Delta n(\xi, \eta) d$$
 (2)

显然,对相关运算结果有影响的只是透过率的虚部。当晶体内部的电场稳定后, $\Delta n(\xi, \eta)$ 与晶体内部电场 $e(\xi, \eta)$ 的关系^[6]为:

$$\Delta n(\xi, \eta) = \frac{1}{2} n_e^3 re(\xi, \eta) \qquad (3)$$

式中 n_e 为晶体对 e 光的折射率, r 是电光系数。而晶体内部电场分布 $e(\xi, \eta)$ 又正比于 干涉光场的光强分布 $I(\xi, \eta)$ 。因此最后有透过率的虚部:

[T(ξ, η)]_{Im} ∝ I(ξ, η) (4) 假设在 4f 系统的输入平面上进行 相关 运算的函数为 f 和 g, 它们的中心位置 相距 2a, 且对称地位于 y 轴的两侧。δ函数位于 距坐标原点为 b 的 y 轴上, 如图 1(a) 所示。

则输入平面上复振幅分布为:

$$U(x, y) = f(x-a, y) + g(x+a, y)$$
$$+\delta(x, y-b)$$
(5)

在频谱平面上的复振幅分布 $U(\xi, \eta)$ 为U(x, y)的傅里叶变换,即

$$U(\xi, \eta) = \mathscr{F}\{U(x, y)\}$$

= $F(\xi, \eta)e^{-i2\pi\xi a} + G(\xi, \eta)e^{i2\pi\xi a}$
+ $e^{-i2\pi\eta b}$ (6)

如果把 Fe:LiNbO₃ 晶体作为实时记录介质 放在频谱平面上,由式(4)可知其复振幅透过 率的虚部

 $[T(\xi, \eta)]_{\rm Im} \propto I(\xi, \eta) = |U(\xi, \eta)|^2$

$$= 1 + |F(\xi, \eta)|^{2} + |G(\xi, \eta)|^{2} + F(\xi, \eta)e^{i2\pi(-\xi a + \eta b)} + F^{*}(\xi, \eta)e^{i2\pi(\xi a - \eta b)} + G(\xi, \eta)e^{i2\pi(\xi a + \eta b)} + G^{*}(\xi, \eta)e^{i2\pi(-\xi a - \eta b)} + F(\xi, \eta)e^{i2\pi(-\xi a - \eta b)}$$

 $+F(\xi, \eta)G^{*}(\xi, \eta)e^{i2\pi(-2\xi a)}$

+ $F^{*}(\xi, \eta)G(\xi, \eta)e^{i2\pi(2\xi a)}$ (7) 由于整个处理过程是实时的,亦即"记录"和 "读出"是同时进行的,因此"读出"时的照明 光波也就是"记录"时的入射光波 $U(\xi, \eta)$ (我们只是为了方便才分开进行分析)。所以, 透过晶体的光的复振幅分布为:

 $U'(\xi, \eta) = U(\xi, \eta) \cdot [T(\xi, \eta)]_{\text{Im}}$ (8) 对 $U'(\xi, \eta)$ 进行傅里叶变换,便可得到输出 平面的复振幅分布

 $\boldsymbol{U}(\boldsymbol{x}',\,\boldsymbol{y}') = \mathscr{F}\{\boldsymbol{U}'(\boldsymbol{\xi},\,\boldsymbol{\eta})\}$

8

= $\mathscr{F}{U(\xi, \eta) \cdot [T(\xi, \eta)]_{m}}$ (9) 将式(9)展开后共得 27 项。若按它们在输出 平面的位置可合并整理成 12 项。其分 布 如 图 1(b)所示。其中我们感兴趣的有 5 项,它 们分别是:

$$\begin{split} &U_{1}(x', y') = 2[f(x', y') \circledast g(x', y')] \\ & \circledast \delta(x', y'-b) & (10) \\ &U_{2}(x', y') = 2[f^{*}(-x', -y') \circledast g(x', y')] \\ & \circledast \delta(x'-2a, y+b) & (11) \\ &U_{3}(x', y') = 2[f(x', y') \circledast g^{*}(-x', -y')] \\ & \circledast \delta(x'+2a, y+b) & (12) \end{split}$$

$$U_{4}(x', y') = f^{*}(x', y')$$

$$\bigotimes \delta(x' - a, y' + 2b)$$
(13)

$$U_{5}(x', y') = g^{*}(x', y')$$

$$\delta(x'+a, y'+2b) \tag{14}$$

式(10)~(14)中,符号 ⑧ 表示卷积。其中 $U_1(x', y')$ 表示函数 f和 g 的卷积运算,其中 心位置为 $(O, b); U_2(x', y')$ 和 $U_3(x', y')$ 表示 函数 f 和 g 的相关运算,其中心位置分别为 (2a, -b)和(-2a, -b);最后两项 $U_4(x', y')$ 和 $U_5(x', y')$ 则分别是函数 f 和 g 的共轭象, 它们的中心位置分别为 (a, -2b)和 (-a, -2b)。

X

必须指出,为使输出平面上各项输出完 全分离,还应根据输入函数空间分布的宽度 适当地选择a和b的数值。设函数f和g在 x方向上的最大宽度分别为 W_t 和 W_a ,在u方向的最大宽度分别为 W' 和 W'a, 并设 W' $>W_{q}, W'_{f}>W'_{q}$ 。由上面的推导可知, 在输 出平面上共有 12 项, a 和 b 的数值显然应由 分布最宽的项来确定。在这些项中,卷积项 U_1 和两个相关项 U_2 、 U_3 在x'方向上最大的 宽度都是 W_t+W_a ,在q'方向上的最大宽度 都是 $W'_{t}+W'_{go}$ f和g的两个共轭项 U_{4} 和 U_5 在x'方向上的最大宽度分别是 W_1 和 W_a , $\overline{a} y'$ 方向上最大的宽度分别是 W'_{i} 和 W'_{a} , 它们都不是分布最宽的项。分布最宽的项位 于x'轴上,中心位置为(-a, O),在x'方向 上最大宽度为 3W_t, y' 方向最大宽度为 3W'_t。 沿 x'方向,与其相邻的项在 a'方向的最大宽 度为 $2W_t + W_a$, 这两项中心相距 $\Delta x' = 2a_a$ 因此只当 $a > \frac{5W_f + W_g}{4}$ 时, 输出平面各项在 x'方向才不会重迭。同样,沿y'方向,与其 相邻的项在 y'方向上最大宽度为 2W,,两项 中心相距 $\Delta y' = b$, 故只当 $b > \frac{5W'_f}{2}$ 时, 输出 平面上各项在 y 方向上才能完全分离。

以上分析结果表明,用 Fe:LiNbO3 晶体 作为记录介质的实时处理系统,在输出平面 上可同时得到输入函数的卷积和相关运算, 还可得到输入函数的共轭象。

三、实验装置和结果

实验装置为 4f 系统,如图 2 所示。He-Ne 激光器 L 发出的光束经准 直系统 OL 扩 束成一宽平面波,照明位于输入平面 P_1 上的 输入图象 I_{\circ} FL_1 和 FL_2 是傅里 叶变换透 镜。Fe:LiNbO₃ 晶体 O放在频谱平面 P_2 上, 为得到高衍射效率的全息图,必须使晶体的 O 轴与入射光的电矢量方向在同一平面内。 P_3 为输出平面,可以放置观察屏或用照相底 板进行记录,也可用光电接收器件进行测 量。

我们先将两个高度均为 h, 宽度均为 W 的矩形函数放在输入平面上, 即

$$f(x-a, y) = \operatorname{rect}\left(\frac{x-a}{W}\right)$$
$$\times \operatorname{rect}\left(\frac{y}{h}\right), \ g(x+a, y) = \operatorname{rect}\left(\frac{x+a}{W}\right)$$
$$\times \operatorname{rect}\left(\frac{y}{h}\right),$$

δ 函数仍位于距坐标原点为 b 的 g 轴 上,如 图 3(a) 所示。然后用照相底板在输出平面 上记录输出的图象,如图 3(b)所示。比较图 3(b)与图 1(b)可以看出,实验结果与理论分 析是完全一致的。若在图 3(b)中建立相应 的坐标系,便可进一步看出,在图中(O, b)处 为两个矩形函数卷积运算的结果;在(2a, -b)和(-2a, -b)处为两个矩形函数相关 运算的结果;在(a, -2b)和(-a, -2b)处分

为了比较自相关输出和互相关输出的强 度,在图 3(a) 所示的输入图象中增加一矩形 函数f'。如图 3(c) 所示, f' 的高度等于f 的 宽度W,而f'的宽度等于f的高度h,其中 心位置为(O, c),即

$$f'(x-c, y) = \operatorname{rect}\left(\frac{x-c}{h}\right) \cdot \operatorname{rect}\left(\frac{y}{W}\right)_{o}$$

图 3(d) 所示是在输出平面用照相底板记录 的相关输出强度分布。从照片中可清楚看 出,矩形函数的自相关输出为一强度很强的 光斑,其位置在(2a, -b)和(-2a, -b)处。 而两个高度与宽度都不相等的矩形函数的互 相关输出则是一弥散斑,其位置在[(a+c), -b]和[(-a-c), -b]处。由于强度很弱,以 致于很难看清楚。 图 3(e) 是在输出平面上, 用带有针孔光阑的光电倍增管沿 a' 轴进行 扫描得到的矩形函数相关输出强度的分布曲 线。可以看出, 自相关输出强度分布曲线有 一尖锐的峰, 而互相关输出强度分布曲线没 有明显的尖峰。

最后,我们还用简单的字母进行了相关 识别原理性实验。因受傅里叶变换透镜孔径 的限制, 输入字母只用"F"和"X"二字, 受 检字母为"F",它们的位置如图 4(a) 所示。 从输出平面拍摄的照片可以看到,在(2a, (-b)和(-2a, -b)处各呈现一个很强的亮 斑,显然它们是字母"F"的自相关输出。而 在 [(a+c), -b] 和 [(-a-c), -b] 处各有 一强度微弱的弥散斑,它们是字母"F"与 "X"的互相关输出,见图 4(b)和(c) 所示,其 中(c)是(b)的一个局部(经放大)。若用光电 倍增管进行扫描,所得的结果也是一致的, 见图 4(d)。在实际应用中,正是根据相关输 出的强度以及光斑的位置来进行特征识别 的。

- [3] S. H. Lee, K. T. Stalker; JOSA, 1972, 62,1336.
- [4] S. H. Lee; Opt. Eng., 1974, 13, 196.
- [5] R.J. 科利尔等;"光全息学"(中译本), p. 290, 机械 工业出版社(1983).
- [6] R. R. Sha et al.; SPIE Vol. 3, Optical Information Processing, 15(1976).